121
Role of Hydropriming and Magneto-Priming in Developing Stress Tolerance
Finch-Savage, W. E., Dent, K. C., & Clark, L. J., (2004). Soak conditions and temperature
following sowing influence the response of maize (Zea mays L.) seeds to on-farm priming
(pre-sowing seed soak). Field Crops Research, 90, 361–374. https://doi.org/10.1016/j.
fcr.2004.04.006.
Flora, S. J. S., (2009). Structural, chemical and biological aspects of antioxidants for strategies
against metal and metalloid exposure. Oxid Med Cell Longev., 2, 191–206. https://doi.
org/10.4161/oxim.2.4.9112.
Florez, M., Carbonell, M. V., & Martínez, E., (2004). Early sprouting and first stages of
growth of rice seeds exposed to a magnetic field. Electro-Magnetobiol., 23, 167–176.
Flowers, T. J., & Colmer, T. D., (2008). Salinity tolerance in halophytes. New Phytologist,
179, 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x.
Forti, C., Shankar, A., Singh, A., Balestrazzi, A., Prasad, V., & Macovei, A., (2020).
Hydropriming and biopriming improve Medicago truncatula seed germination and
upregulate DNA repair and antioxidant genes. Genes, 11(3), 242. https://doi.org/10.3390/
GENES11030242.
Fu, J., & Huang, B., (2001). Involvement of antioxidants and lipid peroxidation in the
adaptation of two cool-season grasses to localized drought stress. Environmental and
Experimental Botany, 45, 105–114. https://doi.org/10.1016/S0098-8472(00)00084-8.
Gallardo, K., Job, C., Groot, S. P. C., Puype, M., Demol, H., Vandekerckhove, J., & Job, D.,
(2001). Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiology,
126(2), 835–848. https://doi.org/10.1104/PP.126.2.835.
Garg, B., (2003). Nutrient uptake and management under drought: Nutrient-moisture
interaction. Curr Agric., 27, 1–8.
Ghassemi, G., Aliloo, A., Valizadeh, M., & Moghaddam, M., (2008). Effect of hydro and
osmo-priming on seed germination and field emergence of lentil (Lens culinaris Medik.).
Not. Bot. Horti. Agrobot Cluj., 361, 29–33.
Ghosh, S., & Sethy, S., (2013). Effect of heavy metals on germination of seeds. J. Nat. Sc.
Biol. Med., 4, 272. https://doi.org/10.4103/0976-9668.116964.
Gill, S. S., & Tuteja, N., (2010). Reactive oxygen species and antioxidant machinery in abiotic
stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.
Gupta, M. K., Anand, A., Paul, V., Dahuja, A., & Singh, A. K., (2015). Reactive oxygen
species-mediated improvement in vigor of static and pulsed magneto-primed cherry tomato
seeds. Ind. J. Plant Physiol., 20(3), 205–212.
Gust, A. A., Brunner, F., & Nürnberger, T., (2010). Biotechnological concepts for improving
plant innate immunity. Current Opinion in Biotechnology, 21, 204–210. https://doi.
org/10.1016/j.copbio.2010.02.004.
Hall, A., (2001). Crop developmental responses to temperature, photoperiod, and light quality.
In: Crop Response to Environment (pp. 83–87).
Hall, J. L., (2002). Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp.
Bot., 53, 1–11.
Harada, E., Kim, J. A., Meyer, A. J., Hell, R., Clemens, S., & Choi, Y. E., (2010). Expression
profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell
Physiol., 51, 1627–1637. https://doi.org/10.1093/pcp/pcq118.
Hare, P. D., Cress, W. A., & Van, S. J., (1998). Dissecting the roles of osmolyte
accumulation during stress. Plant Cell & Environment, 21, 535–553. https://doi.
org/10.1046/j.1365-3040.1998.00309.x.