121

Role of Hydropriming and Magneto-Priming in Developing Stress Tolerance

Finch-Savage, W. E., Dent, K. C., & Clark, L. J., (2004). Soak conditions and temperature

following sowing influence the response of maize (Zea mays L.) seeds to on-farm priming

(pre-sowing seed soak). Field Crops Research, 90, 361–374. https://doi.org/10.1016/j.

fcr.2004.04.006.

Flora, S. J. S., (2009). Structural, chemical and biological aspects of antioxidants for strategies

against metal and metalloid exposure. Oxid Med Cell Longev., 2, 191–206. https://doi.

org/10.4161/oxim.2.4.9112.

Florez, M., Carbonell, M. V., & Martínez, E., (2004). Early sprouting and first stages of

growth of rice seeds exposed to a magnetic field. Electro-Magnetobiol., 23, 167–176.

Flowers, T. J., & Colmer, T. D., (2008). Salinity tolerance in halophytes. New Phytologist,

179, 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x.

Forti, C., Shankar, A., Singh, A., Balestrazzi, A., Prasad, V., & Macovei, A., (2020).

Hydropriming and biopriming improve Medicago truncatula seed germination and

upregulate DNA repair and antioxidant genes. Genes, 11(3), 242. https://doi.org/10.3390/

GENES11030242.

Fu, J., & Huang, B., (2001). Involvement of antioxidants and lipid peroxidation in the

adaptation of two cool-season grasses to localized drought stress. Environmental and

Experimental Botany, 45, 105–114. https://doi.org/10.1016/S0098-8472(00)00084-8.

Gallardo, K., Job, C., Groot, S. P. C., Puype, M., Demol, H., Vandekerckhove, J., & Job, D.,

(2001). Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiology,

126(2), 835–848. https://doi.org/10.1104/PP.126.2.835.

Garg, B., (2003). Nutrient uptake and management under drought: Nutrient-moisture

interaction. Curr Agric., 27, 1–8.

Ghassemi, G., Aliloo, A., Valizadeh, M., & Moghaddam, M., (2008). Effect of hydro and

osmo-priming on seed germination and field emergence of lentil (Lens culinaris Medik.).

Not. Bot. Horti. Agrobot Cluj., 361, 29–33.

Ghosh, S., & Sethy, S., (2013). Effect of heavy metals on germination of seeds. J. Nat. Sc.

Biol. Med., 4, 272. https://doi.org/10.4103/0976-9668.116964.

Gill, S. S., & Tuteja, N., (2010). Reactive oxygen species and antioxidant machinery in abiotic

stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.

Gupta, M. K., Anand, A., Paul, V., Dahuja, A., & Singh, A. K., (2015). Reactive oxygen

species-mediated improvement in vigor of static and pulsed magneto-primed cherry tomato

seeds. Ind. J. Plant Physiol., 20(3), 205–212.

Gust, A. A., Brunner, F., & Nürnberger, T., (2010). Biotechnological concepts for improving

plant innate immunity. Current Opinion in Biotechnology, 21, 204–210. https://doi.

org/10.1016/j.copbio.2010.02.004.

Hall, A., (2001). Crop developmental responses to temperature, photoperiod, and light quality.

In: Crop Response to Environment (pp. 83–87).

Hall, J. L., (2002). Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp.

Bot., 53, 1–11.

Harada, E., Kim, J. A., Meyer, A. J., Hell, R., Clemens, S., & Choi, Y. E., (2010). Expression

profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell

Physiol., 51, 1627–1637. https://doi.org/10.1093/pcp/pcq118.

Hare, P. D., Cress, W. A., & Van, S. J., (1998). Dissecting the roles of osmolyte

accumulation during stress. Plant Cell & Environment, 21, 535–553. https://doi.

org/10.1046/j.1365-3040.1998.00309.x.